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Abstract 
To improve the quality of the thematic map generated from 

spectral data, spatial information can be taken into account. 
Texture features, such as contrast, correlation, energy and 
homogeneity, can be combined with the original spectral data so 
that more detailed presentation of each class’ characteristics is 
obtained. On the other hand, we are facing a very high 
dimensional data set to handle. In this paper, classification using a 
large number of features is addressed with strong emphasis on the 
need of feature selection and feature extraction. Texture features 
and associate parameters are examined in terms of correlations 
between them and their contributions toward class separability. 
Class data normality test is introduced using skewness and kurtosis 
before the Bhattacharyya distance is applied for effective feature 
selection. A progressive two-class decision classifier is adopted for 
a flexible multistage classification. Experimental results show a 
significant improvement by the pair-wise classification using 
properly selected features.   

Introduction  
Multispectral or hyperspectral data record the reflectance of 

various earth cover types at different wavelengths. This spectral 
information has been widely used in pixel labeling [1]. However, 
such pixel-based classification may introduce ‘pepper and salt’ 
appearance on the generated thematic map. To overcome this 
problem, spatial information can be taken into account.  

Classification using texture features have been studied in 
recent years [2-5]. It is expected the texture measures, such as 
contrast, correlation, energy and homogeneity, can be combined 
with the original spectral data so that more detailed presentation of 
each class’ characteristics is obtained. On the other hand, we are 
facing a very high dimensional data set to handle. A number of 
texture measures with various spatial distances in different 
directions can be generated from each spectral band. The resulting 
high dimensional data can experience the Hughes phenomenon [6] 
or the curse of dimensionality. Feature reduction is required to 
reduce the computational cost and, more importantly, to improve 
the robustness of the class models established.  

In this paper, texture features and associate parameters are 
examined in terms of correlations between them and their 
contributions toward class separability. Class data normality test is 
introduced using skewness and kurtosis before the Bhattacharyya 
distance is applied for effective class separability based feature 
selection. A binary classification scheme called progressive two-

class classification is adopted for pixel labeling.  Experimental 
results show a significant improvement by the pair-wise 
classification using properly selected features. 

Test Data Set 
A subset of Landsat Enhanced Thematic Mapper Plus 

(ETM+) data recorded over Canberra region, Australia, on 25 
April 2001 has been used for demonstrating the developed 
procedure. The area consists of a lake, city centre and surrounding 
suburbs, and bushland. The ETM+ sensor records data in six 
spectral bands in the visible and middle infrared range with the 
spatial resolution of 30x30 m2. It also has an image in the thermal 
infrared wavelength with lower spatial resolution. This channel is 
not used in this work. The radiometric resolution is 8 bits. 

Texture Feature Generation 
Texture in an image is determined by the pattern of the 

brightness values within a neighborhood.  The Gray Level Co-
occurrence Matrix (GLCM) [7] has been used widely to present 
the spatial relationships of pixels. It calculates how often a pixel 
with the gray value i occurs in a neighboring pixel with the value j. 
The neighbors can be on its immediate right, above, or in other 
directions. They also can be two or more pixels away. This 
parameter is referred as spatial distance in this paper. The element 
glcm(i, j) is simply the sum of the number of times that the pixel 
with value i occurred in the neighbor with value j in the input 
image. Several image texture statistics can be derived from the 
normalized glcm(i, j), ie. 

 
glcm (i, j) = 1

i, j
∑ ,  

as detailed below [8]. 

Contrast: It is also called variance and inertia. It measures the 
local variations in the image. 

Correlation: It measures the linear dependency of brightness of 
neighboring pixels at the spatial distance defined. 

Energy: It is also known as uniformity or the angular second 
moment. 

Homogeneity: It measures the closeness of the distribution of 
elements in the GLCM to the GLCM diagonal. 



 

 

Above texture measures can be generated for each pixel of an 
original spectral band using the glcm(i, j)  calculated within a local 
window. The new bands/features can then be stacked togather with 
the original spectral bands. The window size selection needs to 
consider the spatial resolution of the image and the distance of 
neighborhood defined in generating GLCM. With the testing data 
set, since it is prohibitive to calculate a GLCM for the full 
dynamic range of 0 to 255, they are scaled to 32. 192 texture bands 
were generated with following parameters.   
 

No. of original spectral bands: 6 
No. of texture measures:   4 
Spatial Distances of neighbors: 1 with window size of 5x5 

2 with window size of 7x7 
Directions of the neighbors:  4 (00, 450, 900 and 1350) 

The outputs of the texture measures were then scaled to 0 to 
255 to match the spectral data range. Together with original 6 
spectral bands, there are 198 features available. The list of the 
features is given in Table 1. However, it is inappropriate to use all 
of them directly for classification. Obviously, not all the features 
are useful for individual projects. The useless features damage the 
reliability of class training. It often leads to high classification 
accuracy on training data but low on testing data, and therefore the 
rest of the image. In other words, the class model has poor 
generalization. Feature reduction is a must step before 
classification can be carried out.  

Table 1: The list of spectral and spatial features 
Feature 
Numbers 

Features 

1 - 6 ETM+ Bands: B1 to B6 
7- 30 Contrast in 4 directions at distance 1 for B1 to B6 
31 - 54 Correlation in 4 directions at distance 1 for B1 to B6 
55 - 78 Energy in 4 directions at distance 1 for B1 to B6 
79 - 102 Homogeneity in 4 directions at distance 1 for B1 to B6 
103 - 198 Same as 7 - 102 but at distance 2 

 

Feature Extraction and Selection 
It is expected some texture features are highly correlated. 

After examining the correlation properties among all the features 
shown in Fig. 1, it was found that the Homogeneity features for 
the 6 spectral bands in all the directions with the same spatial 
distance are highly correlated. The Energy features are insensitive 
to directions as well. Each of this highly correlated group of 
features has been compressed by principal component transform 
and replaced by the first component, respectively, leaving 116 
features for further consideration. 

Further feature selection can be performed based on class 
separability provided by a subset of data. The separability is 
related to mean vector difference and/or covariance matrix 
difference. Since the wide variation of texture for most of ground 
cover types, the normal distribution based separability measure, 
Bhattacharyya distance (B-dis), is preferred. B-dis between class i 
and class j with mean vector m i and m j , covariance matrix Σi  
and Σ j , respectively, is defined as [1]: 

B−dis =
1
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Figure 1. Correlation matrix for the 198 features in the order given in Table 
1. (white = 1 or -1; black = 0.) 

However, if the class data is far away from normal 
distribution, as we can see in the example given in Fig. 2, the 
feature selection results using B-dis will not be reliable and will 
not lead to high classification accuracy. Another issue to consider 
is that the separability measure is class pairwise calculation. With 
more than two classes, the highest average B-dis is normally used 
as the criterion for subset selection. This may not be effective 
since different class pairs can be separated most by different 
subsets of features. To address these problems, normality test for 
each class pair is introduced. The features which pass the test will 
be considered further using B-dis for final feature selection.  

 
The classical statistics of skewness, s, and kurtosis, k, can be 

used to test normality [9]. They are defined as 

s =
(xi − m)3

i=1

n
∑

(n −1)σ 3 / 2
               (2)  

k =
(xi − m)4

i=1

n
∑

(n −1)σ 2
                      (3) 

where xi is the sample brightness; n is the number of samples; m is 
the samples mean; and σ is the sample variance. If x has a normal 
distribution, s is expected to be 0 and k is expected to be 3. For a 
given class pair, the features that provide s value relatively close to 
0 and k value relatively close to 3 are selected. 

 



 

 

Four difficult-to-separate classes, Nature Reserve, Residential 
Area, Grassland, and Pine Plantation, were selected in this study. 
The details of the classes are given in Table 2. Table 3 lists the 
feature selection outcomes.   

Classification 
A progressive two-class decision classifier (pTCDC [10]) (or 

a Directed Acyclic Graph (DAG) [11]) was adopted for 
classification. With this scheme, a multiclass problem is converted 
into M (M −1) /2  (M is the number of classes) independent two-
class separations. At each decision node, only one class pair is 
considered. It provides the flexibility in using the decision rules 
and features required by individual class pairs.  

A Gaussian maximum likelihood classification using the 
features listed in Table 3 was implemented in the pTCDC. The 
classification accuracy received was compared with the cases of 
using spectral data only and using all the spectral and spatial 
features, respectively.  They are given in Fig. 3. It can be seen that 
using selected features for each class pair provides the highest 
overall classification accuracy. 

 

Figure 2. Histograms for 8 different classes ranging from water body, forest 
to buildings on the Contrast feature derived from band 1 with distance 1 in 
the horizontal direction. 

 
Table 2: Number of training and testing pixels used in the 
experiment 

Class 
No. 

Class 
Name 

No. of 
Training 

Data 

No. of 
Testing 

Data 
1 Nature Reserve 220 143 
2 Residential Area 240 168 
3 Grassland 173 123 
4 Pine Plantation 220 112 

 

 

 

Table 3: Feature selection results 
No. of Features Selected Class 

Pair By Normality  By B-dis 
Features 
Selected 

B - dis 

1 & 2 14 3 4,6,116 3.48 
1 & 3 19 1 4 10.63 
1 & 4 11 6 4,8,19,64,110,114 3.31 
2 & 3 18 2 3,4 6.12 
2 & 4 28 2 67,116 4.44 
3 & 4 15 2 4,115 8.34 

 
Discussion and Conclusion 

Spatial features can add new information and used together 
with spectral data. However, not all the features are useful for 
individual mapping applications. Feature selection is important 
preprocessing.  

For each class pair separation, a few features are often 
adequate. Two-class classification scheme is effective and easy to 
implement.  

Skewness and kurtosis were introduced for normality test. 
Other methods are available, such as the Jarque-Bera test and the 
Lilliefors test. Further study will be on alternative normality 
testing.   
 

 

 

 

 

 

 

 
 

Figure 3. Classification accuracy comparison. 
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